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ABSTRACT

Turbulent channel flow and homogeneous shear flow have served as basic building block

flows for the testing and calibration of Reynolds stress models. In this paper, a direct

theoretical connection is made between homogeneous shear flow in equilibrium and the log-

layer of fully-developed turbulent channel flow. It is shown that if a second-order closure

model is calibrated to yield good equilibrium values for homogeneous shear flow it will also

yield good results for the log-layer of channel flow provided that the Rotta coefficient is

not too far removed from one. Most of the commonly used second-order closure models

introduce an ad hoc wall reflection term in order to mask deficient predictions for the log-

layer of channel flow that arise either from an inaccurate calibration of homogeneous shear

flow or from the use of a Rotta coefficient that is too large. Illustrative model calculations

are presented to demonstrate this point which has important implications for turbulence

modeling.

*Research was supported by the National Aeronautics and Space Administration under NASA Contract
Nos. NAS1-18605 and NAS1-19480 while the second author was in residence at the Institute for Computer

Applications in Science and Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23665.





1. INTRODUCTION

Turbulence models have been calibrated and tested using a variety of benchmark tur-

bulent flows among which homogeneous shear flow and channel flow have played a central

role. Typically these two flows are treated as separate tests that are completely indepen-

dent. Starting with the work of Launder, Reece and Rodi 1, the pressure-strain correlation

of turbulence - which forms a pivotal part of second-order closure models - has been cal-

ibrated based on the equilibrium Reynolds stress anisotropies in homogeneous shear flow.

An ad hoc wall reflection term is then added to the pressure-strain model to yield good

predictions for the log-layer of fully-developed turbulent channel flow. There are several

disturbing features about the resulting model: the wall reflection term plays an important

role far into the interior of the channel and it depends in an empirical manner on the normal

distance from the wall. The latter deficiency makes it virtually impossible to systematically

apply second-order closure models to turbulent wall-bounded flows in complex geometries

containing sharp corners. This, as well as other near-wall problems, has impeded progress

in the application of second-order closures to the turbulent flows of technological interest.

In this paper, it is shown that a second-order closure model will yield the same equilibrium

Reynolds stress anisotropies in homogeneous shear flow and in the log-layer of channel flow

if the slow pressure-strain correlation is represented by a Rotta 2 type of return-to-isotropy

model with a coefficient of one. Since experiments 3'4 indicate that the Reynolds stress

anisotropies for these two problems are close to one another, it follows that if a second-order

closure model yields good equilibrium values for homogeneous shear flow it will also yield

good results for the log-layer of channel flow provided that the Rotta coefficient is not too far

removed from one. Illustrative calculations will be presented for four independent pressure-

strain models - which include the models of Launder, Reece and Rodi 1, Shih and Lumley 5,

Fu, Launder and Tselepidakis 6, and Speziale, Sarkar and Gatski r - in order to demonstrate

this point. Some rather surprising results are obtained concerning the performance of these

models in channel flow. In addition, a crucial compatibility condition for the turbulent

diffusion coefficient in the transport equation for the dissipation rate is elaborated on. The

important implications that these results have for the development of improved second-order

closure models are discussed in detail.

2. THEORETICAL ANALYSIS

We consider incompressible turbulent flows for which the Reynolds-averaged Navier-



Stokesequationstake the form

O---t+ _.i Oxj - Oxi + uV2_' - Ox----_ (1)

v. =0 (2)

where gi is the mean velocity, p is the mean kinematic pressure, vii = u_u} is the Reynolds

stress tensor, and v is the kinematic viscosity of the fluid. Here, the Einstein summation

convention applies to repeated indices, an overbar represents an ensemble mean, and a prime

represents a fluctuating quantity. The Reynolds stress tensor is a solution of the transport

equation s

Drij Ogj Ogi 2
Dt Oxk + n,j - - (3)

at high Reynolds numbers where

sT - 0 ,, , ,, ,,
'_ COxk(uiujuk + p ui_Jk ÷ p u/Sik)

are, respectively, the pressure-strain correlation, turbulent dissipation rate, and turbulent

diffusion term; D/Dt - O/Ot+g.V denotes the mean convective time rate and Kolmogorov's

assumption of local isotropy has been invoked.

The two equilibrium turbulent shear flows to be considered are unidirectional with the

mean velocity gradient tensor

Oxj - (4)

where S - dg/dy (see Figure 1). For homogeneous shear flow, S is a constant, whereas for

the log-layer of turbulent channel flow, S = u,/tcy where u, is the friction velocity and n is

the yon K£rm£n constant (in more familiar terms, u + = (1/a)fn y++ 5 in the log-layer where

u + = g/u_ and y+ = yu,/u). In channel flow, the mean convective terms are identically

zero and within the log-layer, turbulence production equals dissipation (7) = e) and, hence,

the molecular and turbulent diffusion terms in (3) can be neglected °. Consequently, the

2K_ij)/2K and shear parameter SK/e (where K =anisotropy tensor bij =-- (rij - 5 5rii is

the turbulent kinetic energy) achieve constant equilibrium values in the log-layer that are

independent of the boundary conditions. In homogeneous shear flow the molecular and

turbulent diffusion terms in (3) are identically zero and each component of the Reynolds

stress tensor grows exponentially at the same rate so that the anisotropy tensor bit and shear

parameter SK/e achieve equilibrium values that are independent of the initial conditions l°.



It is thus clear that the structural equilibrium in homogeneousshear flow and the

production-equals-dissipationequilibrium in the log-layerof turbulent channelflow areeach

characterizedby the constraintsSI(/e = constant and bij = constant. The latter constraint

is equivalent to Dbij/Dt = O, or

Drq _ (p ,rij (5)
Dt - e )-ff

where T' -= --T12S is the turbulence production. The substitution of (4) and (5) into (3),

with vanishing turbulent diffusion terms, yields the equation

vij (_ ) e Ti2 _. _'j2 _ Hij 2 eK - 1 SK _ _j1 -- SK 3 _hii-- _ -_.{, + (6)

which is valid for an equilibrium homogeneous shear flow and for the log-layer of channel

flow. We will consider second-order closure models where

= n!7)+ n!R). (7)

and the slow pressure-strain correlation l-I}s) is represented by a Rotta _ type of return-to-

isotropy model

2 h%j) (8)

whereas the rapid pressure-strain correlation l-Ilff ) is modeled in the general form

(9)

Here, both the Rotta coefficient C1 and the fourth-rank tensor ./t4ijkl can be functions of bij

(see the Appendix).

If we make use of the fact that

P r12 SK (10)
e K e

along with (8)-(9), it is straightforward to show that (6) can be written in the equivalent

form

K K -_jl--f-(-vil+I]ij +(C_-I) \1( 35'J \I(] =0 (11)

where H_) a) - .Mij_2(b) is specified by the pressure-strain model chosen. Hence, since

r_j/K is directly related to b_j, it then becomes clear that a closed set of nonlinear algebraic

equations for the non-zero components of the anisotropy tensor (b11, b12, b22 and b3a) are

obtained once T'/e is specified. Since P/e = 1 for the log-layer of channel flow and P/e ,_ 1.8

for an equilibrium homogeneous shear flow, it is clear that the same equilibrium values will



beobtained for theserespectiveproblemsonly when the Rotta coefficientC', = 1 (the limit

in which the dependence of b_j on P/e is eliminated in (11)). It is also clear that this result

carries over to the more general tensorially quadratic return models of the form 7

II!S) = +6<,- -3 ) (12)

where the coefficient C1 can be a function of the second and third invariants of bij. This leads

us to the central result of this paper: A second-order closure model will yield approximatel 9

the same equilibrium values for bij in homogeneous shear flow and in the log-layer of channel

flow provided that Rotta coefficient is sufficiently close to one. In the next section, model

calculations will be presented to illustrate that with a Rotta constant (71 as large as 1.7 it is

possible to obtain good results for both channel flow and homogeneous shear flow without

an ad hoc wall reflection term.

3. ILLUSTRATIVE MODEL CALCULATIONS

Calculations will now be presented for four pressure-strain models: the Launder, Reece

and Rodi (LRR) model 1, the Shih-Lumley (SL) model s, the Fu, Launder and Tselepidakis

(FLT) model 6, and the Speziale, Sarkar and Gatski (SSG) model 7 (see the Appendix for more

details on the models). The equilibrium values corresponding to these models are obtained

by substituting a given pressure-strain model into (6) and solving the resulting nonlinear

algebraic equations numerically after (10) is made use of to eliminate SK/e. For channel

flow, P/c is set equal to 1 whereas for homogeneous shear flow, P/e is taken to be 1.8. In

Table 1, the equilibrium Reynolds stress anisotropies bij and shear parameter SK/e obtained

from the various models are compared with the experimental data of Tavoularis and Karnik 3

for homogeneous shear flow. Several observations concerning these results are noteworthy:

(a) the SSG and FLT models are, by far, in the best agreement with the experimental data

for homogeneous shear flow, (b) the LRR model does not do as well since it was calibrated

based on the older and less complete experimental data of Champagne, Harris and Corrsin 11,

and (c) the SL model performs the worst since, in its calibration, homogeneous shear flow

was not directly accounted for. In Table 2, the corresponding model predictions for the

log-layer of channel flow are compared with experimental data 4 (here, an average is taken of

the log-layer values which vary somewhat with y+). Apparently, only the SSG model yields

equilibrium values that are in close range of the experimental data. The FLT model - which

performs well in homogeneous shear flow - does not do quite as well in channel flow. This

is a direct consequence of the theoretical result derived in the previous section. If a model

yields accurate results in homogeneous shear flow, good results will automatically follow for

the log-layer of channel flow provided that the Rotta coefficient is sufficiently close to one.



In the SSGmodel, the Rotta coefficient C_ = 1.7 is sufficiently close to one to guarantee

that
(C, - 1)]lb,jH. Hb,2]] <<1 (13)

iIn:'j(R)ll ,l .
for all i and j where I1 II is any suitable norm (this is a sufficient condition, that follows

directly from (11), which guarantees that results for bij in homogeneous shear flow and

channel flow will be close to one another as indicated by experiments). On the other hand,

due to its nonlinear dependence on the invariants of bij, the Rotta coefficient C1 _ 3 for

the FLT model which explains why the normal Reynolds stress anisotropies in channel flow

differ by as much as 25% from their counterparts for homogeneous shear flow. The same is

true for the SL model since its Rotta coefficient C1 is approximately 5 in homogeneous shear

flow (however, unlike the FLT model, the SL model renders inaccurate predictions for both

homogeneous shear flow and channel flow). The LRR model has a sufficiently small Rotta

coefficient C1 --_ 1.5 so that the deviations between its predictions for bij in homogeneous

shear flow and in channel flow are not fatal. The problem with this model is that it was

not optimally calibrated for homogeneous shear flow - a deficiency that is tied to the fact

that this model was developed before the more accurate experimental data became available

which clearly indicated that production exceeds dissipation. In the calibration of the LRR

model, the production was set equal to the dissipation for homogeneous shear flow 1.

Some comments are in order concerning how these results compare with the more de-

tailed model calculations of homogeneous shear flow by Speziale and co-workers 7'w''2 and

the recent systematic calculations of channel flow by Demuren and Sarkar 13. For these more

complete calculations, the Reynolds stress transport equation (3) must be supplemented

with a modeled transport equation for the turbulent dissipation rate c which is typically

taken to be of the form 1

De e _2 0 / K O_ \

D--/-- C.,-_-'P - C,_ :-_ + _ _C, r,.i --_---_xj ) (14)

where C_l, C_2 and C_ are constants whose values vary from one model to the next. For

homogeneous shear flow, the diffusion terms in (14) vanish. Since, DK/Dt = P - _ for any

homogeneous turbulence, it then follows that an equilibrium state is achieved where

P C_2 - 1
- = -- (15)
E C_1 - 1

in the limit as t ---* oc (see Speziale and Mac Giolla Mhuirisl°). Hence, the equilibrium values

for the various models given on Table 1 are identical to those that would be obtained from full

Reynolds stress transport calculations using the model (14) with (C_2 - 1)/(C_I - 1) = 1.8.

Since most of the models do not employ precisely the same values for C_1 and C_2, there



are some small differences between the equilibrium values displayed in Table 1 and those

published previously 7,1°,12. However, the calculations presented herein for homogeneous shear

flow actually form a more objective basis for the comparison of Reynolds stress models since

_o/¢ is set to a common experimental equilibrium value and the calculations are then freed

from dependence on the model chosen for the turbulent dissipation rate.

There is also a compatibility relation for the log-layer of channel flow that needs to be

discussed. Since in the log-layer du+/dy + = ¢+ = 1/ny + and bij as well as K are constant,

it follows that

+ I) (16)

for the modeled dissipation rate equation to be consistent. Full Reynolds stress calculations

of channel flow with models that satisfy the consistency constraint (16) will be in close

approximate agreement with our calculations. The minor differences between the equilibrium

values given in Table 2 based on our log-layer analysis and those obtained by Demuren and

Sarkar 13 based on full Reynolds stress calculations are due to turbulent diffusion effects and

the fact that some of the models considered herein violate constraint (16). Since C_2 - C,1

is in the range of 0.40 - 0.45 for most of the commonly used models, it follows that in

order to yield avon K£rm£n constant of n = 0.41 (with the approximate log-layer values

of b12 _ -0.15 and b22 _ -0.14), the value of C_ chosen should be in the range of 0.I6

- 0.18. This constraint should be made use of more carefully in the future formulation of

second-order closure models.

Finally, some comments are in order concerning the wall reflection term that is added

to many pressure-strain models in second-order closures to yield acceptable predictions for

the log-layer of turbulent channel flow. Typically, the wall reflection correction Hi_ is of the

general form 1

l-Iij Cwl-_ rij- t($ij + w2"'ij J ¢Y

where _}_) is directly related to the rapid pressure-strain model in the absence of wails, y is

the distance normal to the wall, and C_1 and C,_2 are empirical constants. Since

K3/2
= tcK +312 ,._ 2.5 (18)

¢y

in the log-layer, and since C,,1 is typically chosen to be in the range of 0.1 - 1.0, it follows

that the wall reflection term makes a significant contribution to the slow pressure-strain

correlation (this needs to be the case for many pressure-strain models due to their poor

performance in channel flow as shown in Table 2). The problem with this is clear. At high

Reynolds numbers the log-layer extends far into the interior of the channel. To have an

6



ad hoc correction - that depends on the normal distance from the wall - play a significant

role far into the interior of the fluid is dangerous. It seriously diminishes the possibility of

applying these models in complex geometries with corners where the normal distance y from

the wall is not uniquely defined.

4. CONCLUSIONS

A direct theoretical connection between the log-layer of turbulent channel flow and ho-

mogeneous shear flow in equilibrium has been established. These flows have traditionally

been treated as being independent tests since in the former flow there is a production-equals-

dissipation equilibrium, with bounded turbulent kinetic energy and dissipation, whereas in

the latter flow, production exceeds dissipation so that the turbulent kinetic energy and dis-

sipation rate grow exponentially with time. However, both flows have a common theoretical

thread that connects them: the anisotropy tensor bij and shear parameter SK/e achieve

equilibrium values that are independent of the initial/boundary conditions. It was shown

that in the limit as the Rotta coefficient goes to one, a second-order closure model will yield

the same equilibrium values for bij in the log-layer of channel flow and in homogeneous shear

flow. Furthermore, it was demonstrated that with a Rotta coefficient C1 as large as 1.7

- which is a value that allows for the collapse of a significant range of return to isotropy

data r - a model that was calibrated to yield good equilibrium values for homogeneous shear

flow (the SSG model) also performs well in the log-layer of channel flow without ad hoe

corrections. Hence, it appears that a model can be calibrated to perform well in both flows

provided that the Rotta coefficient is not too far removed from one.

The results obtained in this study have important implications for turbulence modeling.

It is rather disquieting how poorly many of the currently popular second-order closure mod-

els perform in the log-layer of turbulent channel flow. These deficiencies have their origin in

two major sources: an inaccurate calibration of the model for homogeneous shear flow or the

use of a Rotta coefficient that is too far removed from one (a state of affairs that has arisen

from the introduction of an empirical nonlinear dependence of C1 on the invariants of bij).

The introduction of an ad hoc wall reflection term to alleviate this problem has seriously

inhibited the ability to apply second-order closure models to turbulent flows in complex

geometries. Since turbulent channel flow is dynamically similar to a two-dimensional equi-

librium turbulent boundary layer - which forms a cornerstone for many practical engineering

applications - it is crucial to get this flow right without ad hoe corrections that make the

model geometry-dependent. The results of this study clearly show that it is possible to do

this. More attention needs to be paid to this issue in the future if second-order closure

models are to have an impact on the calculation of complex wall-bounded turbulent flows.
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APPENDIX

The detailed form of the pressure-strainmodelsconsideredin this paper areasfollows:

Launder, Reece _ Rodi Model

•

--2bkl_kl_ij) "JCC3[((bikWjk "31-bjkWik )

(A1)

where

_'J = i \Oxj + Ox,] ' W,, = 7 \Oxj - ox,)

Cl = 1.5, C:2 = 1.75, C3 = 1.31

(A2)

(A3)

Shih gJ Lumley Model

4 . (bik-Sjk +IIij ---- -flebij + -_I_ _ij + 12asK bjkSik

3

4 .
+-_ I_ (bitb_mSjm + bjtbtm-Si._ - 2bik-Sklblj

(A4)

-3bk[Sktbij) + _K(b, bl_Wj_ + bjtbtmWim)

where

F exp(-7.77/_-t){72/_/-_ + 80.1 ln[1 + 62.4(-II + 2.3III)]}_=2+ 5- (A5)

F= l + 9II + 27III

1
II = --_bijbij, III = lbi3bjkbki3

4 K 2
Ret = -_

9 t,,¢

as=i- 6 1+ F}

(A6)

(A7)

(A8)

(A9)
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Fu, Launder FJ Tselepidakis Model

II,j = t31_b,j + f12_ (b_kbkj - _bk,bk,_ij)

4. (bik-_jk bjk"S,k _bk,_k,'ij)+-_I_j + 1.2K + -

+bjk bkt_il -- 2bik]_kt blj - 3bkt_kjbij)

+bjkWik) + 12 (b, kbktWt._bmj + bjkbktWt,_bml)]

where

_1 = 120IIF1/2 + 2F1/2 - 2, _2 = 144IIF1/2

Speziale, Sarkar _ Gatski Model

where

C_ = 1.7, C_" = 1.80, C2 = 4.2

4

C3 = _, C_ 1.30, 6'4 = 1.25

Cs = 0.40, IIb= b_jb#

(A10)

(All)

(A12)

(A13)

(A14)

(A15)
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Equilibrium
Values

bll

b22

b33

SK/e

LRR

Model

0.152

-0.119

-0.033

4.83

SL

Model

0.120

-0.121

-0.122

0.002

7.44

FLT

Model

0.196

-0.151

-0.136

-0.060

5.95

SSG

Model

0.218

-0.164

-0.145

-0.073

5.50

Experimental

Data

0.21

-0.16

-0.14

-0.07

5.0

Table 1. Comparison of the model predictions for the equilibrium values in homogeneous

shear flow (T'/e = 1.8) with the experimental data of Tavoularis and Karnik 3.
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Equilibrium
Values

bll

512

b22

533

SK/e

LRR

Model

0.129

-0.178

-0.101

-0.028

2.80

SL

Model

0.079

-0.116

-0.082

0.003

FLT

Model

0.141

-0.162

-0.099

-0.042

SSG

Model

0.201

-0.160

-0.127

-0.074

4.30 3.09 3.12

Experimental
Data

0.22

-0.16

-0.15

-0.07

3.1

Table 2. Comparison of the model predictions for the equilibrium values in tile Fog-layer of

turbulent channel flow (7'/e = 1) with the mean experimental data of Laufer 4.
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(a) Homogeneous Shear Flow

Tij _ e At

E _,_ e "_t

S -,, constant

bij, Sk/¢ _ constant
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m>l
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f

7
f

f

i f
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(b) Log-Layer of Channel Flow

rij ,,, u_ I --P = 1
¢ "" u3/y bij, Sk/e ,_ constant ¢

S ,,, u_./y ] Y'

///.,//////////

h

h

7//,

Figure 1. Schematic of the equilibrium turbulent flows: (a) Homogeneous shear flow and

(b) log-layer of channel flow.
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implications for turbulence modeling.
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